环境气候对风力发电机组叶片内部裂纹损伤热响应影响的试验研究

王健, 丛日强, 张永, 包曼

太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 662-667.

PDF(2497 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2497 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (5) : 662-667. DOI: 10.19912/j.0254-0096.tynxb.2024-1720

环境气候对风力发电机组叶片内部裂纹损伤热响应影响的试验研究

  • 王健, 丛日强, 张永, 包曼
作者信息 +

EXPERIMENTAL INVESTIGATION ONIMPACT OF ENVIRONMENTAL CLIMATE ON THERMAL RESPONSE TO INTERNAL CRACK DAMAGE IN WIND TURBINE BLADES

  • Wang Jian, Cong Riqiang, Zhang Yong, Bao Man
Author information +
文章历史 +

摘要

针对风力发电机组叶片的内部裂纹损伤,采用试验研究的方法,探究其在不同环境温度、辐照度、风速作用下的热响应变化规律,明确环境温度、辐照度和风速对热响应的影响水平。结果表明:内部裂纹区域与无损区域的热对比度变化可分为3个阶段,从试验初期(0~40 s)的尚未形成或较微弱,到试验中期的快速增长,再到试验后期的相对稳定;环境温度对内部裂纹区域与无损区域的热对比度无显著影响,而辐照度有极显著的影响,风速有显著影响。

Abstract

To address the internal crack damage of wind turbine blades, an experimental approach was employed to investigate the variation in thermal response under different ambient temperatures, irradiance levels, and wind speeds. The study aimed to determine the extent to which these environmental factors influence the thermal response. The results indicate that the thermal contrast between the cracked and undamaged regions evolves through tjrpigj three stages: from the initial phase of the experiment (0~40 s)with nonexistent or weak contrast, a mid-phase with rapid contrast increase, and a late phase with relatively stable contrast. Ambient temperature has no significant effect on the thermal contrast between the internal cracked region and the undamaged region, while irradiance has a highly significant effect and wind speed has a significant effect.

关键词

风力发电机组叶片 / 内部损伤 / 裂纹 / 热响应 / 环境气候

Key words

wind turbine blades / internal damage / cracking / thermal response / environmental climate

引用本文

导出引用
王健, 丛日强, 张永, 包曼. 环境气候对风力发电机组叶片内部裂纹损伤热响应影响的试验研究[J]. 太阳能学报. 2025, 46(5): 662-667 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1720
Wang Jian, Cong Riqiang, Zhang Yong, Bao Man. EXPERIMENTAL INVESTIGATION ONIMPACT OF ENVIRONMENTAL CLIMATE ON THERMAL RESPONSE TO INTERNAL CRACK DAMAGE IN WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 662-667 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1720
中图分类号: TK83   

参考文献

[1] 国家能源局. 国家能源局发布2024年1-9月份全国电力工业统计数据[EB/OL]. (2024-10-21) [2024-10-25]. https://www.nea.gov.cn/2024-10/21/c_1212405574.htm.
National Energy Administration. National Energy Administration releases national electric power industry statistics for January-September2024[EB/OL]. (2024-10-21) [2024-10-25]. https://www.nea.gov.cn/2024-10/21/c_1212405574.htm.
[2] AMINZADEH A, DIMITROVA M, MEIABADI M S, et al.Non-contact inspection methods for wind turbine blade maintenance: techno-economic review of techniques for integration with industry 4.0[J]. Journal of nondestructive evaluation, 2023, 42(2): 54.
[3] GARCÍA MÁRQUEZ F P, PECO CHACÓN A M. A review of non-destructive testing on wind turbines blades[J]. Renewable energy, 2020, 161: 998-1010.
[4] LI H, CHEN C, WANG T G, et al.Experimental study of stepped-lap scarf joint repair for spar cap damage of wind turbine blade in service[J]. Applied sciences, 2020, 10(3): 922.
[5] LE T C, LUU T H T, NGUYEN H P, et al. Piezoelectric impedance-based structural health monitoring of wind turbine structures: current status and future perspectives[J]. Energies, 2022, 15(15): 5459.
[6] Scotland Against Spin. Summary of wind turbine accident data to 31 December2023[EB/OL]. (2023-01-05) [2024-02-21]. https://scotlandagainstspin.org/turbine-accident-statistics/.
[7] KAEWNIAM P, CAO M S, ALKAYEM N F, et al.Recent advances in damage detection of wind turbine blades: a state-of-the-art review[J]. Renewable and sustainable energy reviews, 2022, 167: 112723.
[8] WANG W J, XUE Y, HE C K, et al.Review of the typical damage and damage-detection methods of large wind turbine blades[J]. Energies, 2022, 15(15): 5672.
[9] WORZEWSKI T, KRANKENHAGEN R, DOROSHTNA SIR M, et al.Thermographic inspection of a wind turbine rotor blade segment utilizing natural conditions as excitation source, part I: solar excitation for detecting deep structures in GFRP[J]. Infrared physics & technology, 2016, 76: 756-766.
[10] WORZEWSKI T, KRANKENHAGEN R, DOROSHTNA SIR M.Thermographic inspection of wind turbine rotor blade segment utilizing natural conditions as excitation source, part II: the effect of climatic conditions on thermographic inspections-a long term outdoor experiment[J]. Infrared physics & technology, 2016, 76: 767-776.
[11] 吴国境, 王健, 张永, 等. 自然激励下风电叶片损伤的红外热像检测研究[J]. 太阳能学报, 2020, 41(9): 353-358.
WU G J, WANG J, ZHANG Y, et al.Research on infrared thermal image detection of wind turbine blade damage under natural excitation[J]. Acta energiae solaris sinica, 2020, 41(9): 353-358.
[12] CHAUDHURI S, STAMM M, KRANKENHAGEN R.Weather-dependent passive thermography and thermal simulation of in-service wind turbine blades[J]. Journal of physics: conference series, 2023, 2507(1): 012025.
[13] LI X, HE Y Z, WANG H J, et al.Thermal inspection of subsurface defects in wind turbine blade segments under the natural solar condition[J]. IEEE transactions on industrial electronics, 2024, 71(9): 11488-11497.
[14] WANG C, GU Y Q.Research on infrared nondestructive detection of small wind turbine blades[J]. Results in engineering, 2022, 15: 100570.
[15] WANG C, GU Y Q.Research on infrared nondestructive testing and thermal effect analysis of small wind turbine blades under natural excitation[J]. Infrared physics & technology, 2023, 130: 104621.
[16] 刘颖韬, 许路路, 何方成, 等. 环境因素对闪光灯激励红外热成像外场检测的影响[J]. 红外与激光工程, 2021, 50(12): 380-387.
LIU Y T, XU L L, HE F C, et al.Effects of environmental factors on infrared flash thermography nondestructive testing in outfield detection[J]. Infrared and laser engineering, 2021, 50(12): 380-387.
[17] 吴国境. 基于红外热像技术的风力机叶片损伤检测研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
WU G J.Research on wind turbine blade damage detection based on infrared thermal imaging technology[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
[18] 王健, 吴国境, 张永, 等. 基于场景重构的风力机叶片损伤热效应数值模拟研究[J]. 太阳能学报, 2021, 42(5): 350-355.
WANG J, WU G J, ZHANG Y, et al.Numerrical simulation of wind turbine blade damage thermal effect based on scene reconstruction[J]. Acta energiae solaris sinica, 2021, 42(5): 350-355.

基金

内蒙古自治区自然科学基金(2023ZD12; 2023MS05043); 内蒙古自治区高等学校科学技术研究项目(NJZZ23031); 内蒙古自治区“草原英才”工程现代农牧业工程新技术研发及应用创新人才团队(内组通字[2018]19号)

PDF(2497 KB)

Accesses

Citation

Detail

段落导航
相关文章

/