为保证浮式风力机在复杂海洋环境中的稳定性,在浮体设计时需着重考虑其运动响应特性。以X1 wind公司的X30浮式风力机浮体为研究对象,运用模型试验与数值分析相结合的方法开展该浮式风力机浮体系统水动力特性研究。首先,运用时域全耦合分析方法,通过模型试验完成浮式风力机浮体水动力特性分析,根据其运动响应(特别是垂荡响应)偏大的问题,在风力机浮式基础的立柱结构底部下,增设4种不同的垂荡板结构。通过运用模型试验方法,重点研究不同垂荡结构作用下的运动响应控制效果,同时研究不同垂荡结构下风力机浮体的固有周期、实测阻尼、运动响应的不同波高特性和周期敏感性。其次,采用模型试验修正后的数值分析,对不同垂荡结构处承受的波浪载荷进行研究,获得垂荡结构波浪载荷特性。基于优选出的垂荡结构,研究畸形波作用下的垂荡运动控制效果。
Abstract
In order to ensure the stability of the floating wind turbines in the complex marine environments, the motion response characteristics should be considered during floating body in the design. In this paper, the X30 floating wind turbine floating body of X1 wind company is taken as the research object, and the hydrodynamic characteristics of the floating wind turbine floating body system are studied by combining model tests with numerical analysis. Firstly, a time-domain fully coupled analysis method is used to analyze the hydrodynamic characteristics of the floating body of the floating wind turbine through the model test. To address the issue of excessive motion response (especially the heave response) is too large, four different heave plate structures are added under the bottom of the column structure of the floating foundation of the wind turbine. Using the model tests, the control effect of motion response under different heave structures is primarily investigated. At the same time, the natural period, measured damping, different wave height characteristics and period sensitivity of motion response of floating body under different heave plate structures are studied. Secondly, the wave loads on different heave plate structures are analyzed by numerical analysis after model test corrections, and the wave load characteristics of heave structures are obtained. Based on the optimized heave plate structure, the heave motion control effect under the action of freak waves conditions is studied.
关键词
浮式风力机 /
运动控制 /
数值分析 /
模型实验 /
水动力特性 /
畸形波
Key words
wind turbines /
motion control /
numerical analysis /
model test /
hydrodynamic characteristics /
freak wave
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王一, 周舒旎, 温斌荣, 等. 漂浮式风机运动抑制方法综述[J]. 中国海洋平台, 2023, 38(4): 18-26.
WANG Y, ZHOU S N, WEN B R, et al.Review of motion suppression methods for floating wind turbines[J]. China offshore platform, 2023, 38(4): 18-26.
[2] 李嘉文. 新型海上风机浮式基础设计与风机系统耦合动力分析[D]. 天津: 天津大学, 2014.
LI J W.Design of floating foundation of new offshore wind turbine and coupling dynamic analysis of wind turbine system[D]. Tianjin: Tianjin University, 2014.
[3] 赵志新, 施伟, 王文华, 等. 二阶波浪力下超大型半潜浮式风力机动态响应分析[J]. 太阳能学报, 2023, 44(1): 335-345.
ZHAO Z X, SHI W, WANG W H, et al.Dynamic response analysis of an ultra-large semi-submersible floating wind turbine under second-order wave forces[J]. Acta energiae solaris sinica, 2023, 44(1): 335-345.
[4] JONKMAN J M, MATHA D.Dynamics of offshore floating wind turbines-analysis of three concepts[J]. Wind energy, 2011, 14(4): 557-569.
[5] 陈宇, 祝磊, 吴松熊. 新型漂浮式海上风电基础概念设计和初步动力响应分析[J]. 太阳能学报, 2024, 45(8): 581-586.
CHEN Y, ZHU L, WU S X.Conceptual design and preliminary dynamic response analysis of novel floating offshore wind turbine foundation[J]. Acta energiae solaris sinica, 2024, 45(8): 581-586.
[6] 刘中柏, 唐友刚, 王涵, 等. 半潜型风电浮式基础运动特性试验研究[J]. 哈尔滨工程大学学报, 2015, 36(1): 51-56.
LIU Z B, TANG Y G, WANG H, et al.Experimental study of motion behaviors for semi-submersible floating foundation of wind power[J]. Journal of Harbin Engineering University, 2015, 36(1): 51-56.
[7] 赵战华, 范亚丽, 匡晓峰, 等. 半潜式浮式风机耦合动力响应特性试验研究[J]. 中国造船, 2022, 63(1): 198-206.
ZHAO Z H, FAN Y L, KUANG X F, et al.Experimental research on coupling dynamic response of semi-submersible floating offshore wind turbine[J]. Shipbuilding of China, 2022, 63(1): 198-206.
[8] CHEN B, YU Z Y, LYU Y, et al.A new type of anti-heave semi-submersible drilling platform[J]. Petroleum exploration and development, 2017, 44(3): 487-494.
[9] LI B B, HUANG Z H, LOW Y M, et al.Experimental and numerical study of the effects of heave plate on the motion of a new deep draft multi-spar platform[J]. Journal of marine science and technology, 2013, 18(2): 229-246.
[10] 丁勤卫, 李春, 叶舟, 等. 浮式风力机平台动态响应优化研究[J]. 太阳能学报, 2017, 38(5): 1405-1414.
DING Q W, LI C, YE Z, et al.Research on optimization for dynamic response of platform of floating wind turbine[J]. Acta energiae solaris sinica, 2017, 38(5): 1405-1414.
[11] 刘鲲, 朱航, 欧进萍. TMD在半潜式平台垂荡响应控制中的应用[J]. 工程力学, 2011, 28(增刊1): 205-210.
LIU K, ZHU H, OU J P.Application of TMD in heave response control of semi-subemersible platform[J]. Engineering mechanics, 2011, 28(S1): 205-210.
[12] 郑建才, 赵伟文, 万德成. 垂荡板对浮式风机水动-气动耦合性能影响研究[J]. 海洋工程, 2022, 40(1): 65-73.
ZHENG J C, ZHAO W W, WAN D C.Effects of heave plate on coupling aero-hydrodynamic performances of floating offshore wind turbine[J]. The ocean engineering, 2022, 40(1): 65-73.
[13] 周国龙, 叶舟, 丁勤卫, 等. 漂浮式风力机Spar平台垂荡板强迫振荡的优化探讨[J]. 太阳能学报, 2017, 38(3): 684-690.
ZHOU G L, YE Z, DING Q W, et al.Research on improvement of forced oscillation for heave plates of floating wind turbine Spar platform[J]. Acta energiae solaris sinica, 2017, 38(3): 684-690.
[14] 赵玉鹏. 畸形波作用下浮式风机结构强度时域分析方法研究[D]. 镇江: 江苏科技大学, 2023.
ZHAO Y P.Study on time domain analysis method of structural strength of floating fan under freak wave action[D]. Zhenjiang: Jiangsu University of Science and Technology, 2023.
[15] 霍发力, 张楠, 徐杰. 畸形波作用下双平台联合作业的波浪砰击特性研究[J]. 中国造船, 2024, 65(1): 109-122.
HUO F L, ZHANG N, XU J.Study on wave slamming characteristics of dual-platform joint operation under freak waves[J]. Shipbuilding of China, 2024, 65(1): 109-122.
基金
国家自然科学基金(57071161); 国家杰出青年基金(52025112)