SOFC/MGT混合动力系统性能分析及协同控制策略研究

霍海波, 朱鸿翔, 徐胜, 曹正良, 许竞翔, 李曦

太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 79-88.

PDF(2140 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2140 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (6) : 79-88. DOI: 10.19912/j.0254-0096.tynxb.2024-2025
第二十七届中国科协年会学术论文

SOFC/MGT混合动力系统性能分析及协同控制策略研究

  • 霍海波1, 朱鸿翔1, 徐胜1, 曹正良2, 许竞翔1, 李曦3
作者信息 +

PERFORMANCE ANALYSIS AND COOPERATIVE CONTROL STRATEGY OF SOFC/MGT HYBRID POWER SYSTEM

  • Huo Haibo1, Zhu Hongxiang1, Xu Sheng1, Cao Zhengliang2, Xu Jingxiang1, Li Xi3
Author information +
文章历史 +

摘要

为高效利用固体氧化物燃料电池(SOFC)的高温废热和提升系统的热电效率,提出一款以甲烷为燃料的新型固体氧化物燃料电池/微型燃气轮机(SOFC/MGT)混合动力系统。该系统在传统混合系统的基础上增设燃料旁通阀和加热器,以满足SOFC电堆入口温度的需求,并最大化利用其废热。为满足频繁波动的负载功率需求并确保透平具有合适的入口温度,首先基于所建混合动力系统的数学模型,对变工况条件下各组件的温度、输出功率等动态特性进行分析,然后在此基础上,设计混合动力系统的温度、功率协同控制策略。仿真结果表明,当负载功率需求频繁变化时,所设计控制系统的输出功率能实时跟踪外部功率需求变化并将透平入口温度控制到目标值,说明所设计的控制方案是有效的。此外,当负载功率需求变化时,就透平入口温度主动控制对混合动力系统性能的影响进行探究,结果表明对透平入口温度进行主动控制有利于系统功率跟踪和安全运行,并有效提高混合系统的效率。

Abstract

A novel methane-fueled solid oxide fuel cell/micro gas turbine (SOFC/MGT) hybrid system is proposed to enhance thermoelectric efficiency by utilizing high-temperature waste heat from the SOFC. To meet inlet temperature requirements and maximize waste heat utilization, the system adds fuel bypass valves and heaters, on the basis of the conventional hybrid configurations. To address the challenges of fluctuating load demands and maintaining optimal turbine inlet temperatures, the dynamic temperature and power output characteristics of each component are firstly analyzed under variable operating conditions using a mathematical model of the hybrid system. Then, on this basis, the temperature and power cooperative control strategy of the gybrid power system is designed.Simulation results indicate that the proposed control strategy allows the system to adapt smoothly to changing load demands, sustaining target turbine inlet temperatures while aligning with external power requirements. Findings also reveal that actively controlling turbine inlet temperatures not only supports efficient power tracking and safe operation but also significantly improves the hybrid system's overall efficiency.

关键词

固体氧化物燃料电池 / 燃气轮机 / 混合系统 / 温度控制 / 功率控制

Key words

solid oxide fuel cells / gas turbines / hybrid systems / temperature control / power control

引用本文

导出引用
霍海波, 朱鸿翔, 徐胜, 曹正良, 许竞翔, 李曦. SOFC/MGT混合动力系统性能分析及协同控制策略研究[J]. 太阳能学报. 2025, 46(6): 79-88 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2025
Huo Haibo, Zhu Hongxiang, Xu Sheng, Cao Zhengliang, Xu Jingxiang, Li Xi. PERFORMANCE ANALYSIS AND COOPERATIVE CONTROL STRATEGY OF SOFC/MGT HYBRID POWER SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 79-88 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2025
中图分类号: TM911   

参考文献

[1] WANG X S, LYU X J, MI X C, et al.Coordinated control approach for load following operation of SOFC-GT hybrid system[J]. Energy, 2022, 248: 123548.
[2] 宋明, 仝佳佳, 蒋文春, 等. 甲烷混合燃料气内重整反应对平板式固体氧化物燃料电池性能影响[J]. 太阳能学报, 2025, 46(1): 373-382.
SONG M, TONG J J, JIANG W C, et al.Effect of internal reforming reaction of methane mixed fuel gas on performance of planar solid oxide fuel cells[J]. Acta energiae solaris sinica, 2025, 46(1): 373-382.
[3] GRILLO O, MAGISTRI L, MASSARDO A F.Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell[J]. Journal of power sources, 2003, 115(2): 252-267.
[4] WU X J, HUANG Q, ZHU X J.Power decoupling control of a solid oxide fuel cell and micro gas turbine hybrid power system[J]. Journal of power sources, 2011, 196(3): 1295-1302.
[5] CHEN J W, LIANG M Z, ZHANG H S, et al.Study on control strategy for a SOFC-GT hybrid system with anode and cathode recirculation loops[J]. International journal of hydrogen energy, 2017, 42(49): 29422-29432.
[6] 武鑫, 吴万哲, 白浩, 等. 基于深度神经网络的SOFC电堆温度场建模[J]. 太阳能学报, 2023, 44(7): 55-60.
WU X, WU W Z, BAI H, et al.Modelling of SOFC stack temperature field based on deep neural network[J]. Acta energiae solaris sinica, 2023, 44(7): 55-60.
[7] FERRARI M L.Solid oxide fuel cell hybrid system: control strategy for stand-alone configurations[J]. Journal of power sources, 2011, 196(5): 2682-2690.
[8] WANG X S, MI X C, LYU X J, et al.Fast and stable operation approach of ship solid oxide fuel cell-gas turbine hybrid system under uncertain factors[J]. International journal of hydrogen energy, 2022, 47(50): 21472-21491.
[9] JIA Z Z, SUN J, DOBBS H, et al.Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: modeling, design and control[J]. Journal of power sources, 2015, 275: 111-125.
[10] MCLARTY D, BROUWER J, SAMUELSEN S.Fuel cell-gas turbine hybrid system design part II: dynamics and control[J]. Journal of power sources, 2014, 254: 126-136.
[11] 霍海波, 谢根辉, 徐胜, 等. 基于模型的5 kW SOFC系统操作参数寻优[J]. 太阳能学报, 2023, 44(11): 443-449.
HUO H B, XIE G H, XU S, et al.Model-based optimization of operating parameters for 5 kW SOFC system[J]. Acta energiae solaris sinica, 2023, 44(11): 443-449.
[12] 吕小静. SOFC/GT混合动力系统运行关键问题研究[D].上海: 上海交通大学, 2016.
LYU X J.Key operational problem research of solid oxide fuel cell/gas turbine hybrid system[D]. Shanghai: Shanghai Jiao Tong University, 2016.
[13] 陈金伟. 基于引射回流的固体氧化物燃料电池-燃气轮机系统建模与控制策略研究[D]. 上海: 上海交通大学, 2018.
CHEN J W.Modeling and control strategy study of the solid oxide fuel cell-gas turbine system with ejector recirculation[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[14] SORRENTINO M, GUEZENNEC Y G, PIANESE C, et al.Development of a control-oriented model for simulation of SOFC-based energy systems[C]//ASME 2005 international Mechanical Engineering Congress and Exposition. Orlando, Florida, USA, 2005: 1265-1272.
[15] MASSARDO A F, LUBELLI F.Internal reforming solid oxide fuel cell-gas turbine combined cycles (IRSOFC-GT): part A: cell model and cycle thermodynamic analysis[J]. Journal of engineering for gas turbines and power, 2000, 122(1): 27-35.
[16] GALLO M, MARRA D, SORRENTINO M, et al.A versatile computational tool for model-based design, control and diagnosis of a generic solid oxide fuel cell Integrated stack module[J]. Energy conversion and management, 2018, 171: 1514-1528.
[17] WU X J, GAO D H.Optimal robust control strategy of a solid oxide fuel cell system[J]. Journal of power sources, 2018, 374: 225-236.
[18] AGUIAR P, ADJIMAN C S, BRANDON N P.Anode- supported intermediate temperature direct internal reforming solid oxide fuel cell, I: model-based steady-state performance[J]. Journal of power sources, 2004, 138(1/2): 120-136.
[19] LYU X J, LU C H, WANG Y Z, et al.Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine[J]. Energy, 2015, 91: 10-19.
[20] SARAVANAMUTTOO H I H, ROGERS G F C, COHEN H, et al. Gas turbine theory[M]. 6th ed, United London: Pearson Education, 2009: 187-263.
[21] 蒋建华. 平板式固体氧化物燃料电池系统的动态建模与控制[D]. 武汉: 华中科技大学, 2013.
JIANG J H.Dynamic modeling and control of planar solid oxide fuel cell systems[D]. Wuhan: Huazhong University of Science and Technology, 2013.

基金

国家重点研发计划(2022YFB4003805)

PDF(2140 KB)

Accesses

Citation

Detail

段落导航
相关文章

/