基于SUKF-EKF融合的锂电池状态估计方法

王期文, 盛强, 何玉财

太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 11-21.

PDF(3817 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3817 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (12) : 11-21. DOI: 10.19912/j.0254-0096.tynxb.2025-0830

基于SUKF-EKF融合的锂电池状态估计方法

  • 王期文1, 盛强1, 何玉财2
作者信息 +

LITHIUM-ION BATTERY STATE ESTIMATION METHOD BASED ON SUKF-EKF FUSION

  • Wang Qiwen1, Sheng Qiang1, He Yucai2
Author information +
文章历史 +

摘要

针对锂离子电池状态估计中扩展卡尔曼滤波(EKF)精度不足及参数变化适应性差的问题,提出一种通过EKF实现电池参数的在线辨识与更新,同时融合滑模观测器(SMO)与无迹卡尔曼滤波(UKF)的锂电池状态估计方法(SUKF)。该方法构建双层时间尺度协同估计架构,利用EKF进行电池参数在线识别并估计SOH,同时结合SMO的鲁棒特性与UKF的非线性处理能力实现SOC高精度估计。通过高速公路燃效测试工况、新型欧洲行驶周期与城区动态驾驶循环3种代表性环境进行验证,结果表明,融合算法SOC估计平均误差分别为0.13%、0.25%和0.14%,最大误差控制在0.46%以内,相比传统EKF算法精度提升超过85%;SOH估计在不同复杂度工况下平均误差为0.02%~0.16%,最大误差不超过0.53%;在5%噪声强干扰环境下,算法仍保持良好的估计精度和收敛性能。随着工况复杂度增加,融合算法性能优势更为明显,显著提高了电池状态估计的准确性和鲁棒性,为动力电池管理系统提供了有效解决方案。

Abstract

To address the insufficient accuracy and poor adaptability to parameter variations of Extended Kalman Filter (EKF) in lithium-ion battery state estimation, this paper proposes a method utilizing EKF for online battery parameter identification and updating, while integrating Sliding Mode Observer (SMO) and Unscented Kalman Filter (UKF) for lithium battery state estimation (SUKF). The method establishes a dual-layer temporal scale collaborative estimation architecture, employing EKF for online battery parameter identification and State of Health (SOH) estimation, while combining SMO’s robustness with UKF’s nonlinear processing capabilities to achieve high-precision State of Charge (SOC) estimation. Verification through three representative testing environments—highway fuel economy test conditions, New European driving cycle, and urban dynamometer driving schedule—demonstrates that the fusion algorithm achieves average SOC estimation errors of 0.13%, 0.25%, and 0.14% respectively, with maximum errors constrained within 0.46%, representing over 85% improvement in accuracy compared to traditional EKF algorithms. SOH estimation under varying complexity conditions exhibits average errors ranging from 0.022% to 0.16%, with maximum errors not exceeding 0.53%. Under 5% noise disturbance conditions, the algorithm demonstrates robust estimation accuracy and convergence performance. As operational complexity increases, the performance advantages of the fusion algorithm become more pronounced, significantly enhancing the accuracy and robustness of battery state estimation, thus providing an effective solution for power battery management systems.

关键词

锂离子电池 / 状态估计 / 滑模观测器 / 无迹卡尔曼滤波 / 荷电状态 / 健康状态

Key words

lithium-ion battery / state estimation / sliding mode observer / unscented Kalman filter / state of charge / state of health

引用本文

导出引用
王期文, 盛强, 何玉财. 基于SUKF-EKF融合的锂电池状态估计方法[J]. 太阳能学报. 2025, 46(12): 11-21 https://doi.org/10.19912/j.0254-0096.tynxb.2025-0830
Wang Qiwen, Sheng Qiang, He Yucai. LITHIUM-ION BATTERY STATE ESTIMATION METHOD BASED ON SUKF-EKF FUSION[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 11-21 https://doi.org/10.19912/j.0254-0096.tynxb.2025-0830
中图分类号: TM912   

参考文献

[1] 谭泽富, 彭涛, 代妮娜, 等. 电动汽车BMS关键技术研究进展[J]. 电源技术, 2022, 46(9): 954-957.
TAN Z F, PENG T, DAI N N, et al.Research progress on key technologies of BMS for electric vehicles[J]. Chinese journal of power sources, 2022, 46(9): 954-957.
[2] XIONG R, CAO J Y, YU Q Q, et al.Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE access, 2017, 6: 1832-1843.
[3] 张宇, 李维嘉, 吴铁洲. 基于BP-DCKF-LSTM的锂离子电池SOC估计[J]. 电源技术, 2025, 49(1): 155-166.
ZHANG Y, LI W J, WU T Z.Lithium ion battery SOC estimation based on BP-DCKF-LSTM[J]. Chinese journal of power sources, 2025, 49(1): 155-166.
[4] 黄佳茵, 白俊琦, 贤燕华. 基于DOD-LN-GPR模型的锂离子电池SOH估计方法[J]. 太阳能学报, 2025, 46(2): 60-69.
HUANG J Y, BAI J Q, XIAN Y H.SOH estimation method of lithium-ion batteries based on DOD-LN-GPR model[J]. Acta energiae solaris sinica, 2025, 46(2): 60-69.
[5] KIM E, KIM M, KIM J, et al.Data-driven methods for predicting the state of health, state of charge, and remaining useful life of Li-ion batteries: a comprehensive review[J]. International journal of precision engineering and manufacturing, 2023, 24(7): 1281-1304.
[6] 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136.
FU S Y, LYU T L, MIN F Q, et al.Overview of SOC estimation methods for lithium-ion batteries for electric vehicles[J]. Energy storage science and technology, 2021, 10(3): 1127-1136.
[7] 王越, 李立伟. 基于扩展卡尔曼滤波器的锂电池SOC估算仿真研究[J]. 计算机与数字工程, 2020, 48(1): 206-211.
WANG Y, LI L W.Simulation research of lithium battery SOC estimation based on extended Kalman filter[J]. Computer & digital engineering, 2020, 48(1): 206-211.
[8] 李锦满, 李儒欢, 李浩南, 等. 基于无迹卡尔曼滤波的动力电池状态估计[J]. 电池, 2024, 54(3): 340-343.
LI J M, LI R H, LI H N, et al.State estimation of power battery based on unscented Kalman filter[J]. Battery, 2024, 54(3): 340-343.
[9] HUANGFU Y G, XU J N, ZHAO D D, et al.A novel battery state of charge estimation method based on a super-twisting sliding mode observer[J]. Energies, 2018, 11(5): 1211.
[10] 钱伟, 王浩宇, 郭向伟, 等. 联合改进滑模观测器的自适应卡尔曼滤波荷电状态估计[J]. 电工技术学报, 2025, 40(6): 1984-1994.
QIAN W, WANG H Y, GUO X W, et al.State of charge estimation using adaptive Kalman filter with improved sliding mode observer[J]. Transactions of China Electrotechnical Society, 2025, 40(6): 1984-1994.
[11] 赵轩, 李美莹, 余强, 等. 电动汽车动力锂电池状态估计综述[J]. 中国公路学报, 2023, 36(6): 254-283.
ZHAO X, LI M Y, YU Q, et al.Review on state estimation of power lithium battery for electric vehicle[J]. China journal of highway and transport, 2023, 36(6): 254-283.
[12] ZHANG Y Z, XIONG R, HE H W, et al.A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction[C]//2017 Prognostics and System Health Management Conference (PHM-Harbin). Harbin, China, 2017: 1-4.
[13] PENG N, ZHANG S Z, GUO X, et al.Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter[J]. International journal of energy research, 2021, 45(1): 975-990.
[14] 吕高, 樊郭宇, 张嘉蕾, 等. 温度自适应SMO算法估计锂离子电池的SOC[J]. 电池, 2024, 54(3): 334-339.
LYU G, FAN G Y, ZHANG J L, et al.SOC estimation for Li-ion battery used by temperature adaptive SMO algorithm[J]. Battery bimonthly, 2024, 54(3): 334-339.
[15] 王志福, 罗崴, 闫愿, 等. 基于多方法融合的锂离子电池SOC-SOH联合估计[J]. 北京理工大学学报, 2023, 43(6): 575-584.
WANG Z F, LUO W, YAN Y, et al.Joint SOC-SOH estimation for Li-ion batteries based on multi-method fusion[J]. Transactions of Beijing Institute of Technology, 2023, 43(6): 575-584.
[16] 李心月, 储江伟. 混合电动汽车锂离子电池状态融合估计策略[J]. 电源技术, 2023, 47(2): 204-209.
LI X Y, CHU J W.Novel fusion estimation strategy for state of charge and state of health of hybrid electric vehicle Li-ion batteries[J]. Chinese journal of power sources, 2023, 47(2): 204-209.
[17] WEI Z B, LI X L, XU L J, et al.Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler[J]. Energy, 2013, 55: 683-692.
[18] 孙玉树, 李宏川, 王波, 等. 电池储能系统SOC神经网络融合估计方法[J]. 湖南大学学报(自然科学版), 2023, 50(10): 31-40.
SUN Y S, LI H C, WANG B, et al.SOC neural network fusion estimation method for battery energy storage system[J]. Journal of Hunan University (natural sciences), 2023, 50(10): 31-40.
[19] 董磊, 赖纪东, 苏建徽, 等. 基于IMAFFRLS-EKF的锂电池在线参数辨识和SOC估计方法[J]. 太阳能学报, 2024, 45(6): 66-74.
DONG L, LAI J D, SU J H, et al.Online parameter identification and SOC estimation of lithium battery based on IMAFFRLS-EKF[J]. Acta energiae solaris sinica, 2024, 45(6): 66-74.
[20] 李谦, 姜帆, 韩乔妮, 等. 基于一阶ECM-IGPR的锂离子电池SOC及SOH联合估计框架[J]. 太阳能学报, 2024, 45(5): 240-250.
LI Q, JIANG F, HAN Q N, et al.Joint first order SOC and SOH estimation framework for Li-ion battery based on ECM-IGPR[J]. Acta energiae solaris sinica, 2024, 45(5): 240-250.
[21] LIU Y Y, CAI T T, LIU J B, et al.State of charge estimation for Li-ion batteries based on an unscented H-infinity filter[J]. Journal of electrical engineering & technology, 2020, 15(6): 2529-2538.
[22] BEHNAMGOL V, ASADI M, MOHAMED M A A, et al. Comprehensive review of lithium-ion battery state of charge estimation by sliding mode observers[J]. Energies, 2024, 17(22): 5754.
[23] LIU W Z, HUO Z Y, LUO X W.Lithium-ion batteries SOC estimation using an ANFIS-based adaptive sliding mode observer for electric vehicle applications infrastructures[J]. International journal of critical infrastructures, 2024, 20(6): 538-556.
[24] 邓涛, 罗卫兴. 电动汽车动力电池SOH估计方法探讨[J]. 现代制造工程, 2018(5): 43-49.
DENG T, LUO W X.Research on estimation methods of battery SOH for electric vehicle[J]. Modern manufacturing engineering, 2018(5): 43-49.

基金

湖州市科技计划项目(2024YZ10); 浙江省教育厅一般科研项目(Y202455633)

PDF(3817 KB)

Accesses

Citation

Detail

段落导航
相关文章

/