[1] 李磊, 张兆德, 张吉萍, 等. 考虑流固耦合的Spar型浮式风力机涡激运动特性研究[J]. 太阳能学报, 2020, 41(1): 236-241. LI L, ZHANG Z D, ZHANG J P, et al.Study on vortex induced motion characteristics of Spar-type floating offshore wind turbine considering fluid-structure interaction[J]. Acta energiae solaris sinica, 2020, 41(1): 236-241. [2] 孙洪源, 张举明, 单亦石, 等. 考虑阻尼比的Spar式浮式风力机基础结构涡激运动特性研究[J]. 太阳能学报, 2022, 43(1): 154-160. SUN H Y, ZHANG J M, SHAN Y S, et al.Study on vortex induced motion characteristics of Spar-type floating base structure for offshore wind turbine under different damping ratio[J]. Acta energiae solaris sinica, 2022, 43(1): 154-160. [3] 周斌珍, 胡俭俭, 谢彬, 等. 风浪联合发电系统水动力学研究进展[J]. 力学学报, 2019, 51(6): 1641-1649. ZHOU B Z, HU J J, XIE B, et al.Research progress in hydrodynamics of wind-wave combined power generation system[J]. Chinese journal of theoretical and applied mechanics, 2019, 51(6): 1641-1649. [4] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al.VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[J]. Journal of mechanics and arctic engineering, 2008, 130(4): 041101. [5] 吕艳芳, 李佳冀, 潘思言, 等. 涡激振动发电装置及其关键技术[J]. 装备制造技术, 2020(1): 161-165. LYU Y F, LI J J, PAN S Y, et al.Vortex induced vibration generator and its key technology[J]. Equipment manufacturing technology, 2020(1): 161-165. [6] 练继建, 燕翔, 刘昉. 流致振动能量利用的研究现状与展望[J]. 南水北调与水利科技, 2018, 16(1): 176-188. LIAN J J, YAN X, LIU F.Development and prospect of study on the energy harness of flow-induced motion[J]. South-to-north water transfers and water science & technology, 2018, 16(1): 176-188. [7] DING L, ZHANG L, BERNITSAS M M, et al.Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control[J]. Renewable energy, 2016, 85: 1246-1259. [8] 李小超, 徐伟, 周熙林, 等. 涡激振动发电装置水动力及功率特性实验研究[J]. 浙江大学学报(工学版), 2018, 52(7): 1370-1375. LI X C, XU W, ZHOU X L, et al.Experimental study on hydrodynamic and power characteristics of vortex-induced vibration based power generator[J]. Journal of Zhejiang University(engineering science), 2018, 52(7): 1370-1375. [9] 王世明, 李淼淼, 李泽宇, 等. 国际潮流能利用技术发展综述[J]. 船舶工程, 2020, 42(S1): 23-28, 487. WANG S M, LI M M, LI Z Y, et al.Development overview of international tidal energy utilization technology[J]. Ship engineering, 2020, 42(S1): 23-28, 487. [10] 袁鹏, 陈东旺, 王树杰, 等. 涡激振动潮流能转换装置获能实验研究[J]. 中国海洋大学学报(自然科学版), 2015, 45(10): 114-120. YUAN P, CHEN D W, WANG S J, et al.Experimental study on vortex-induced vibration tidal current energy conversion[J]. Periodical of Ocean University of China, 2015, 45(10): 114-120. [11] SUN H Y, WANG J Z, LIN H H, et al.Numerical study on a cylinder vibrator in the hydrodynamics of a wind-wave combined power generation system under different mass ratios[J]. Energies, 2022, 15(24): 9265. [12] 田辰玲, 刘明月, 王世圣, 等. 张力腿平台涡激运动特性数值模拟与模型试验研究[J]. 中国海上油气, 2021, 33(1): 192-200. TIAN C L, LIU M Y, WANG S S, et al.Numerical simulation and model test on vortex induced motion characteristics of a TLP[J]. China offshore oil and gas, 2021, 33(1): 192-200. [13] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of fluid mechanics, 2004, 509: 23-62. [14] COUTANCEAU M, DEFAYE J R.Circular cylinder wake configurations: a flow visualization survey[J]. Applied mechanics reviews, 1991, 44(6): 255-305. [15] 李霖, 张志国, 王先洲, 等. 低雷诺数圆柱绕流的大涡模拟分析[J]. 舰船科学技术, 2013, 35(1): 22-26. LI L, ZHANG Z G, WANG X Z, et al.Investigation of flow cross cylinder using large eddy simulation at low Re[J]. Ship science and technology, 2013, 35(1): 22-26. [16] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual review of fluid mechanics, 2004, 36(1): 413-455. |